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Abstraet. The energy states of a polaron in the weak-coupling limit were first obtained by 
Frohlich, assuming that the polarization of the lattice due to the electron is continuous. In 
many crystals in which the polaron radius is comparable with the lattice constant, the 
assumption. however, is not fully justified. Toaccount for the lack ofpolarizationmntinuity, 
a polaron model based on the discrete nature of the lattice is proposed in this paper. The 
model is used for calculating the effect of polarization discreteness on the energy and mass 
of a polaron which is considered to  be near the bottom of the conduction band. The model 
is also compared with the work of Lepine and Frongillo who follow an alternate approach 
based on the so-called kq representation. 

1. Introduction 

Frohlich [l] was the first to develop the theory of the polaron in crystals in which the 
electron-phonon interaction is sufficiently weak. The presence of an electron in a polar 
material induces dipole moments due to the relative movement of the ions of the crystal. 
If the average extension of the resultant polarization around the electron exceeds the 
separation between the ions of the lattice, then it is advantageous and mathematically 
convenient to replace the discrete dipoles by a polarization continuum. The assumption 
forms the basis of the weak-coupling theory. The polaron in this case is known as a large 
polaron because the spread of lattice polarization is large compared with the separating 
distance between the cells of the lattice. The large polarons are generally found in III- 
V compounds. There are crystals in which the polaron radius is smaller than the lattice 
constant and the polaron in these crystals is referred to as a small polaron. The earliest 
work dealing with the small polaron is by Landau and Pekar [Z]. In between these two 
extreme cases there are some perovskites in which the polaron radius iscomparable with 
the lattice constant and the polaron in these crystals is called an intermediate polaron. 
It is possible to study the properties of these polarons by extending the range of validity 
of the large-polaron approach whichis proposedin this paper, to include the intermediate 
polaron. This is achieved by maintaining the discrete nature of the lattice. Such a model 
is developed and used for obtaining the energy states and mass of a polaron near the 
bottom of the conduction band. 

The ground-state energy of the intermediate polaron has recently been studied by 
Lepine and Frongillo [3] using the kq approximation [4? 51. In this approximation the 
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positional coordinate of the electron is given by q which is restricted to the lattice cell 
and the position of the cell is denoted by R .  The coordinate conjugate to R is given by k 
which describes the translationally invariant motion of the electron. In this rep- 
resentation the interaction of the electron with the neighbouring atomscan be described 
simultaneously with the translationally invariant motion of the electron in the periodic 
lattice. The approximation is not particularly easy to follow since the transformation of 
the Hamiltonian to kq coordinates prevents its interpretation in terms of the usual 
coordinates. Using the approximation, Lepine and Frongillo [3] have been able to 
generalize the Frohlich Hamiltonian to include the effect of the discrete nature of the 
polarization. The generalization is, however, not exact since the approximation allows 
theevaluation of the lower-ordercorrection to thepolaronenergydue to thediscreteness 
of the lattice but the higher-order corrections are not readily available within the context 
of the theory. Additionally the theory is critically dependent on the introduction of a 
cut-off in the integral over the lattice modes since without the cut-off the integral which 
gives the polaron energy diverges. 

In this paper, we propose adiscrete latticemodel for the polaron in which theelectron 
interacts individually with each ion of the lattice. The interaction leads to changes in the 
frequencies of the electromagnetic excitations of the crystal. The frequency changes are 
evaluated and used to calculate the change in the zero-point energy of the crystal. The 
average interaction energy between the electron and the lattice is given by the shift in 
the zero-point energy. This approach, which was used earlier by Hawton and Paranjape 
[6]andMahantyandParanjape[7]todeterminetheself-energyoftheelectroninapolar 
crystal, forms the basis of our present calculation. Additionally we treat the interaction 
between the electron and the lattice as a perturbation and assume that the unperturbed 
statesof the electron are given by plane-wave states. We alsoconsider that the vibrational 
frequenciesof the lattice are undispersed. Our approach is thereforesimilar to the weak- 
coupling approach except for the important difference that we assume that the lattice 
and the associated lattice polarization are discrete rather than continuous. The proposed 
method allows us to extend the weak-coupling theory to include the effects arising from 
the discrete nature of the polarization. At this stage we wish to remark that the neglect 
ofdispersionoftheopticalfrequenciesinadiscretelatticemayappear to beanunreason- 
able assumption. We have therefore calculated the effect of the phonon dispersion on 
the polaron energy and its mass separately. 

The proce.durc for obtaining the effect of the discrete polarization on the polaron 
energy is as follows. When a lattice ion is displaced from its equilibrium position, it 
acquires a potential energy which is due to its interaction with other ions and in addition 
also due to its interaction with the mobile electron as is the case in the present paper. Of 
the two sources the former leads to the vibrational frequency oo of the ion which we 
define as the unperturbed frequency. We denote the potential energy of the jth ion 
interacting with the mobile electron as ~ E ( u , )  where aj is the displacement of the ion 
from its equilibrium position. Our method, based on quantum mechania, for obtaining 
the theoretical expression for the energy 6E(uj) follows the work of Manson and Ritchie 
[SI. The expression for 6E(ui) is used as a perturbation in the wave equation for thejth 
ion. The solution of the wave equation gives the frequency of the ionic motion and also 
the change in the frequency from its unperturbed value mu. The total shift in the 
vibrational energy of the N lattice ions (i.e. the change in zero-point energy) due to their 
interaction with the electron is then obtained and equated to the average expectation 
value of the electron-lattice interaction energy. Since in this approach the individual 
identity of the ions is maintained, the method is suitable for evaluating the effect of the 
discrete nature of the lattice on the electron-lattice interaction energy. 

V V Paranjape and P V Panai 
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The main aim of this paper is to provide a method for obtaining the effect of the 
discrete nature of the lattice on the polaron energy by calculating the changes in the 
zero-point energy of the electron-lattice system. Our approach offers an alternative 
method of accounting for the effect of the discrete lattice on the polaron energy to the 
approach based on the kq approximation proposed by Lepine and Frongillo [3]. 
Although both our method and the method of Lepine and Frongillo give similar results, 
we believe that our method is more direct. Additionally, for the completeness, we have 
also obtained the effect of the phonon dispersion on the energy and the mass of the 
polaron. 

2. Zero-point energy 

Our system consists of a single electron in the conduction band interacting with Nions 
ofthecrystal. The state of the electron is denoted by a plane-wave state with a wavevector 
k,. The ionic states in the absence of electron-lattice interaction are given by N non- 
interacting harmonic oscillators. Thus the unperturbed state of our system at zero 
temperature is described by 

where the first term k, denotes the electron state, near the bottom of the conduction 
band and 0, denotes the ground state of the nth oscillator. The excited state is given by 
the electron in state k and one ionic oscillator, from the N oscillators, in the first excited 
level. Thus the excited level of the system is given by 

which is N-fold degenerate. 
The potential energy between the electron and the jth ion is written as V(r  - R,) 

where r is the electron positional coordinate and R, is the coordinate of the jth ion. The 
equilibrium position of the jth ion is given by RP which differs from R, by uj. If we assume 
that U, is small, then it is possible to develop the potential energy V(r  - R,) as a power 
series in ui according to 

The potential energy TjV(r - RP) has the lattice periodicity and, in the effective-mass 
approximation, its effect on the electron is simply to change its mass m to the effective 
massm*. 

The potential energy 6E(u,) is defined as the interaction energy between the jth ion 
which is displaced from its equilibrium position by amount ai and an electron in state k,. 
We obtain the quantity 6E(uj) using the procedure described by Manson and Ritchie [8] 
and the definition 

P o ,  lw),) = l~o) lo l ) lo?)  t .  . IO,). , . IO,) (1) 

I4  WtJnm)J = lktlOl)lO?)~ , . I L ) .  . . I O n ) ,  . . IO,) (2) 

V(r - R i )  = V(r - RP) + U,. V,oV(r - RP) + . . .. 

A E =  J (u,10,) W u , )  (Ojluj) du, (3) 

where AE is the average interaction energy between the electron and the lattice and is 
given by the second-order perturbation theory: 

where the interaction Hamiltonian H is given by 

H ' = E H ;  H; = U, . V,pV(r - RP). ( 5 )  

The unperturbed energy of the electron is given by Ek = hzk2/2m*. For our purposes it 
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is sufficient to consider only the first excited state of the ionic oscillators. Comparing 
equations (3) and (4) and following Manson and Ritchie [8]  allows us to write 

V V Paranjape and P V Panat 

If we now develop the bare potential energy V(r - R f )  between the ion at R: and the 
electron at rin terms of a Fourier series as follows: 

V(r - RP) = 2 V(q) exp[iq. (r - Ry)]  (7) 
I 

then it is possible to write 

H; = - U, . (iq)V(q) exp[iq. (r - R;) ] .  ( 8 )  
q 

To obtain 6E(u,) in equation (6) we need various matrix elements and oscillator wave- 
functions. They can be found in any standard textbook on quantum mechanics [9].  The 
results are given below: 

(u,/o,) = ( 1 / 2 ~ ~ ; ) ~ / ~  exp(-u:/4r2,) (9) 
(u,~I,) = [(2)’/’/~31‘](1/2rZp)s/~u, exp(-u;/dri) cos 8 (10) 

( k O I ~ ’ ( u , ) I ~ )  = E U, - ( - iq)~(q)exp(- iq .W 6k,ka-9. ( 12) 
4 

In equations (9)-(11) we have substituted rP for (h/2m*w0)’/’ which is known to be the 
polaron radius. In equation ( 8 )  the angle 6 is in between ui and 9. Substitutingequations 
(8)-(12) into (6) we get 

We now set up the Schrodinger equation for the jth ion using equation (13): 

[ ( -h2 /2M)V2  + ( M w ~ / ~ ) u ,  . U ,  + 6E(u,)](u,lO,) = E,hlO,) (14) 

where E, is the perturbed ground-state energy of the jth oscilator. The second term on 
the right-handsideofequation (14)is thepotentialenergyoftheoscillator intheabsence 
of the electron and the third term gives the change in the potential energy due to the 
presence of the electron in state kO. Substituting (13) into (14) and solving for E, leads to 

On the assumption that there are N oscillators, the shift in the zero-point energy of the 
lattice is given by 

where we have replaced the ion mass by the reduced mass w. The wavevector q is defined 
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in the development of the electron-ion interaction as given by equation (7). Its range 
covers the entire reciprocal space, while the energy E is defined in a single band. 
Therefore the k-valuesoccurring in the energy Eare restricted to the first Brillouin zone. 
We restrict all the wavevectors occurring in equation (16) to the first Brillouin zone by 
writing equation (16) as follows: 

where G are the reciprocal lattice vectors. The effect of the lattice structure is included 
in the interaction energy AE through the reciprocal lattice vectors. We shall evaluate 
the energy given by equation (17) in the following section. 

3. Caleulation 

3.1. Effect of the discrete lattice 

The interaction energy as given by equation (17) is obtained directly without using the 
Frohlich Hamiltonian and assuming the discrete nature of the lattice. The effect of the 
discrete lattice is included through the reciprocal lattice vectors and by the fact that the 
summation over q is restricted to the first Brillouin zone. It is important to realize that 
the expression for AE as given by equation (17) is independent of a specific form of the 
bare potential V(r - RY) between the electron and the jth lattice ion. The flexibility 
offered by equation (17) in the selection of the potential energy V(r - Ry) and in the 
selection of the appropriate crystal structure makes it particularly useful for the study 
of the structural effects of the lattice on the polaron energy. We select a relatively simple 
form of the potential energy between the electron at rand the jth lattice ion, according 
to 

V(r) = (+)e2/E,lr-RyI (18) 

V(q) = (*) 4ze2/&,Qq2 (19) 

and its Fourier component as 

where E, is the high-frequency dielectric constant, 9 is the crystal volume and the 
positive or negative signs arise depending on the charge of the ion. We now define the 
well known Frohlich constant cuaccording to 

CL= (eZ/h)(m/2h~o)1~2(~;i  - egi) (20) 

4zeZN/M&=S7 = (W&’E~)(&~ - E- ) .  

and express the relation between the zero- and high-frequency dielectric constants and 
the optical mode frequency woof the polar crystal according to [ 4 , 8 ]  

(21) 
We now make use of equations (18)-(21) for obtaining the interaction energy AE as 
given by equation (17). We assume that the Brillouin zone is spherical so that the 
maximumvalue 141 is given by qm, in all directions. 

where y is the angle between k, and q ,  and the angles 0 and q are the polar angles made 
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by Q with G, which is the polar axis. If we define 0, and qn as the polar angles of the 
vector k, made with the polar axis G,, then the trignometric consideration gives 

Expanding equation (22) in powers of ko, and retaining terms up to ka the average 
interaction energy AE is then given by 

V V Paranjape and P V Panat 

cosy=cos8cosen +sin0sin0,cos(q-q,). (23) 

(CAW,,) 2m 2hwo @ h qZdqsinBd8da, 
(2.n)’ ( h ) (  m c l  (q2+GZ,+2qGncos0)  

A E = - -  - _. 

we now write Ai€ as a sum of two terms: AE = A$ + Ai€, where A$ corresponds to 
putting ko = 0 in (24) so that it represents the shift in the conduction band edge. AE, 
arises from the term [4kaq2/(q2 + rp2)’] cos’ y in equation (24) and gives the dynamic 
effects of the mobile electron on ALE. On integration we get 

2 
 ALE^ = -duo (‘tan-’(qmrp) + ;E,+[I n ‘PG. - (rpqm)-l tan-l(qmrp)l) (25) 

wherein thefirst termwehaveseparatedout the G = Otermandthesecondtermcontains 
the effect of the lattice structure through G, for n greater than zero. Furthermore in 
obtaining equation (25) we have expanded equation (24) in powers of qm/lGI and 
retained termsup to (qm/lGl)z. Fora more realisticcalculation in which the actual shape 
ofthe Brillouinzone isneeded,onemust resorttonumericalintegrationof(24). Similarly 
we get 

The approximate expression for AE in the limit r,qm approaching infinity is given as 

where we have retained terms up to l/rpqm If we neglect terms (rpqm)-l and (rpGn)-l in 
equation (U),  then the expression reduces to the well known result valid for the large- 
polaron case, i.e. 

The energy .$ko) of the electron consisting of the unperturbed and perturbed parts can 
be written as 

(28) AE = -&w0 - d2k:/12m. 

where we have used equation (27) for AE and &(ko) = Exo + AE. 
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9"p 

Figure 1. Variation in (m,, - m)/m,, as a function of '8,". 

The expression for polaron mass mpOl can be obtained if we define 

I/% I - - (1/fi2)[a24ko)/ak201. (30) 

Using the definition (30) and equation (29) we get 

If we restrict ourselves to the smallest reciprocal lattice vectors GI and write GI  in terms 
of the lattice constant a according to GI = 2n/a,  then the expression for the polaron 
mass for a crystal with cubic symmetry becomes 

1/mp,, = (l/m)[l - 01/6 - or(3/4nz)(a2/r;)]. (32) 

We conclude from (32) that, if a/rp is comparable with unity, the effect of the discrete 
nature of the polarization on the polaron mass is not negligible. 

For numericalestimateswe obtain a moreexact result forthe polaronmass by making 
use of equations (E), (26), (29) and (30). We also consider a cubic lattice and take into 
account only the smallest reciprocal lattice vectors, i.e. Ihe G,-values. With these 
assumptions the effect of the angular dependence is eliminated and the expression for 
the polaron mass can be written as 

(mPl - m)/mpol~ = (1/3~)Utan-'(rpqd + qmrp(q2mrZp - 1)/(1+ rpqm) 2 2 2  

+ (3/rZpq%B tan-l(rPqm) 

- ?z qm"p/(l + r;&) f qmrp/(l + &?dz + (f/rpqm) [1 + 9/8(1 + qkri)  

- 1/4(1 + rpqm)  - (15/8rpqm) tan-'(rp41}II. (33) 2 2 2  

Equation (33), shown graphically in figure 1, gives the polaron mass in terms of rpqm. if 
rpqm approaches infinity, the polaron radius is very much larger than the interionic 
distance and the right-hand side of equation (33) approaches the asymptotic value equal 
to 0,1666 which gives the well known result for the polaron mass in the large-polaron 
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limit. We shall use equation (33) as shown in figure 1 to estimate the value of the polaron 
mass for specific compounds in the following section. 

V V Paranjape and P V Panal 

3.2. Effect of rhephonon dispersion 
To consider the effect of lattice dispersion on the polaron energy and the polaron mass 
we write AE as follows: 

Equation (34) is similar to equation (17) except for the differences that the phonon 
frequency is now assumed to depend on the wavevector q and the effect of reciprocal 
lattice vectors of magnitude greater than zero are neglected. The summation over q is, 
as before, restricted to the Iirst Brillouin zone. We now assume that the optical phonon 
frequency depends on q as follows: 

44 = WO - 6(4/qm)2 (35) 

where 6 = w o  - w’ and w’ is the optical phonon frequency at q = qm. 6 represents the 
frequency spread between coo at zero q and w ‘ .  Usually 6 is positive. We now substitute 
equations (19), (20). (21) and (35) into equation (34) anddevelop the resulting equation 
in powers of k,. Retaining terms up to k; and performing the integration over q,  we get 
expressions similar to those given by equations (25) and (26). Retaining the same 
notation as used in calculating the effect of the discrete lattice in section 3.1, we write 
AE = AE,, + AEl where 

AE, = -(d2k~/6mn){tan-’(n2 - p)’” [ (x‘  -4n’p - 8p2) /x3(x2 - p)112] 
+ [P - r 2 ( l  + 5p)  + 4pz - 4P]/X(1 + x2  - p)z 
- (4p3”/x3) log,[(l - B’”)/(l + p’”)]). (36) 

Here we have usedn = rpqm and p = 6/wo. An expression for AEocan also be written, 
but we do not do so for brevity. We note that equation (36) gives the dynamical part of 
the interaction energy due to the phonon dispersion and contains the first-order effect 
due to the discrete lattice since the q-values are restricted to the first Brillouin zone. The 
expression does not contain contributions arising from the higher reciprocal lattice 
vectors beyond the zeroth reciprocal vector. Using equation (30) we can write the 
expression for the polaron mass as follows: 

(mWl - m)/m,,,ru= (1/3n){tan-’(x2 - B)[(x4 + 4px2 - S p 2 ) / x 3 ( x 2  - p)’/’] 

+ [x* - x2(1 + 5p) + 4p2 - 4p]/!(l + x2  - p)’ 

- (4p3’*/x3)lo&[(1 - p’”)/(l + p”’)]}. (37) 

If we put @ = 0, then the effect of phonon dispersion is removed from equation (37) and 
the right-hand side of the equation gives the effect of the discrete lattice as given by the 
first two terms in the open-face square brackets (an) in equations (33). We shall use 
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equation (37) to evaluate the effect of the phonon dispersion on the polaron mass of 
specific compounds in the following section. 

4. Discussion and results 

We have obtained in this paper an expression for the polaron energy which is valid for 
the polaron whose radius is larger than but comparable with the lattice constant a. The 
ground-state energy of the polaron is given by equation (25) in which the effect of the 
discrete nature of lattice polarization is given by the second term while the first term 
gives the Frohlich result for the large polaron. If we set qm = n/a and GI = 2n/a with 
six G,-vectors, then neglecting the contributions of G-vectors higher in magnitude than 
GI and expanding the energy expression in powers of qmrp, we get 

A&, = -~uhwo(l + a/&, + . . .). (38) 

When a/r,approaches zero, the second term in (38) decreases to zero and the first term 
gives the FrBhlich result for the weak-coupling polaron. When rp is comparable with a, 
we find that the effect of the discreteness on AEo can be as large as 10%. The expression 
is similar in form to the expression derived by Lepine and Frongillo [3] using kq 
representation. However since the work of the earlier researchers is based on the use of 
a cut-off, the difference between the numerical constant of our result and that of Lepine 
andFrogillo [3] is not too surprising. ' ' '.' . 

We now consider the term AEl which contains the effect of the electron motion on 
the polaron energy through the term k, and also the effect of the electron-lattice 
interaction on the polaron mass. Equation (33) gives the change in the polaron mass due 
to the discrete nature of the lattice, and equation (36) gives the effect of the phonon 
dispersion on the polaron mass. 

To discuss the effects of lattice discreteness on the polaron mass we consider pot- 
assium chloride as an example. For this material [3] the Frohlich coupling constant 01 = 
3.44 and rpqm = 9.05. Using these values and figure 1, we can obtain the value of 
Ampol(rpqm = 9.05). If we assume that the lattice is continuous (i.e. neglecting the 
discreteness of the lattice) the change in the polaron mass for this case is given by 
Ampol(rpqm = m) and is obtained from figure 1 by using r,q, = m. For KCI the ratio 

[AmpOl(x = 9.05)/Amp,,(x = m)] = 1.077 

where we have written x = rpqm. For RbCI, we have 01 = 3.81 and rpqm = 9.44. Again, 
using figure 1 we obtain the value 

[AmpI(x = 9.44)/mPl(x = m)] = 1.087. 

For NaCI, (Y = 4.86, rpqm = 5.96 and the ratio 

[Ampol(x = 5.96)/AmP,,(x = m)] = 1.37. 

For NaCl the band mass is not known and the bare mass is used in the evaluation of the 
parameters. This overestimates the value of 01 and the effect of the discreteness. Hence 
the results for NaCl are not reliable, although it gives rather a large effect arising from 
discreteness of the lattice. All parameter values used are given in [IO]. 
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We now turn our attention to equation (37) which gives the effect of the phonon 
dispersion on the polaron mass. The equation also contains the lowest-order effect of 
the discreteness of the lattice on the polaron mass. The examination of equation (37) 
clearly shows that the effect of phonon dispersion which is included through the term p 
is small if rpqm is large and if p is small. For moderately small values of rpqm the effect of 
the phonon dispersion can be significant. For the materials considered earlier while 
discussing the effect of lattice discreteness, we find that the effect of the phonon dis- 
persion is not negligible but it is much less than the effect of the lattice discreteness. 

Equation (37) gives the change in the polaron mass if phonon dispersion is in the 
form given by equation (34) and if the parameter p is given. The equation also contains 
the effect of the discrete lattice up to the first order through the parameterx = rpqm. For 
KCIweestimate[ll]theaveragevalueofp = 0.25andasbeforecu = 3.44andx = 9.05. 
Using equation (37) we get 

[Amp& = 0.25)/Amw1(p = O)] = 1.028 

For RbCI, p = 0.23 and as before (Y = 3.81 and x = 9.44. The change in the polaron 
mass due to phonon dispersion is 

[Am,,,(P = 0.23)/Ampol(p = O)] = 1.03. 

From the numerical estimates of the effect of the lattice discreteness and of the 
phonon dispersion on the polaron mass, we conclude that the effect of the lattice 
discreteness is larger than the effect of the phonon dispersion. The effect of the phonon 
dispersion is, however, not negligible. The combined effects of the two could be suf- 
ficiently large and measurable. 

A very comprehensive review on the subject of experimental measurements of the 
polaron mass is given by Hodby [12]. It is possible to obtain the polaron mass quite 
accurately using cyclotron resonance measurements, the accuracy being limited by the 
purity of the sample. Some of the results obtained in this work can possibly be observed 
if measurements of the polaron mass are made in crystals which are subjected to strong 
linear or hydrostatic pressures. Such pressures could cause a change in the lattice 
constant and hence the polaron mass. 

Finally, we wish to remark on a feature in equation (26). If gives the self-energy of 
the electron which is direction dependent with respect to the reciprocal lattice vectors. 
The effect is quite small. It is eliminated in the case of cubic crystals. It is not very likely 
that the effect could be detected by measuring the polaron mass since the band mass of 
the electron has its own anisotropic character and the anisotropy predicted in this work 
is expected to be much smaller than the natural anisotropy of the band mass owing to 
the static lattice. 
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